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OF ASPIDOSPERMA ALKALOIDS :
I - CONSTRUCTION OF THE [ABC]-TYPE TRICYCLIC INTERMEDIATES.

Jean d’Angelo and Didier Desmaele

Unité de Chimie Organique Associée au CNRS
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Abstract : Carbazolone 19 has been prepared in eight steps from cyclohexanone 11 (36 % overall yield).

A great amount of work has been devoted to the synthetic approaches to pentacyclic Aspidosperma
alkaloids ! [exemplified by (—)-aspidospermidine, 1, R = Et]. Thus, for example, in the strategies developed by
Magnus 2, Ziegler 3, and others 4, the [ABCD}-type tetracycles 2 are elaborated in the penultimate stage.
Although unused in the foregoing tactics, the tricyclic carbazolones 3 constitute a priori particularly
well-suited subunits for the construction of such tetracyclic entities.
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In fact, tricyclic compounds 3 bear a single asymmetric center (future C-20 center in alkaloids 1),
namely a quaternary carbon atom in the a-position to the carbonyl group of a cyclanone. This particular
structural feature is encountered in adducts 7, resulting from the very efficient asymmetric Michael process we
have described 3, summarized by the transformation [4 — 7]. Thus chiral imines § derived from racemic
o-substituted cyclanones 4 and optically active 1-phenylethylamine react (as their tautomeric secondary
enamine forms) with electron-deficient alkenes 6 to produce, after hydrolysis, o-disubstituted cyclanones 7
with high yields and excellent enantiomeric excesses.
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In this communication, we report the successful application of this method to the enantioselective
synthesis of tricyclic compound of type 3. The first and a priori simplest route for the preparation of compound
3 which we have explored was the addition of electrophilic alkenes to the tricyclic imine 10. The latter
compound was obtained in three steps, starting from 4-methyl-1,3-cyclohexanedione 8. This diketone was first
transformed by regioselective Fischer indole synthesis © into the carbazolone 9 (R = H), (i : phenylhydrazine, ii
: H,804 50 %, 100 °C, 2 h, 45 % yield). The nitrogen atom of the latter compound was then tosylated by the
use of phase transfer catalysis (50 % aqueous NaOH, CH,Cl,, tetrabutylammonium hydrogen sulfate, TsCl, 85
% yield). Imine 10, derived from ketone 9 (R = Ts) 7 and R(+)-1-phenylethylamine was prepared by using the
titanium chloride-catalyzed procedure. & (TiCl,, toluene, 20 °C, 12 h, 92 % yield). Unfortunately this imine
proved to be completely unreactive toward electrophilic alkenes, even under drastic conditions, a failure
reflected by the complete lack of secondary enamine form in tautomeric equilibrium with imine 10 .
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In view of such frustrating results, we turned then to the following indirect route, reasoning that the
indole moiety of tricyclic compound 3 could be subsequently elaborated by the regioselective introduction of
an appropriately substituted aniline onto the monocyclic 1,3-dione 17 [17 — 18], followed by ring closure of
the resulting enaminone 18 [18 — 19].

(R)-keto-ester 11, prepared through the aforementioned asymmetric Michael process °, was used as
chiral starting material in the present strategy. This keto-ester was transformed into the required dione 17, in
six steps, with an overall yield of 50 %, according to the following oxidation state adjustement sequence.
Keto-ester 11 was first converted into silyl enol ether 12 (TMSCI, Et3N, 80 °C, 48 h in DMF) which was
oxidized ' into cyclohexenone 13 1! (DDQ, toluene, collidine, 20 °C, 72 h, 82 % yield from 11). Thiophenol
was next added to the cyclohexenone (PhSH, Et;N cat) and the resulting thio-adduct 14, by chlorination 12
(NCS, CCly, 5 % cyclopentene), gave the thio-enone 15 13 (80 % yield from 13). Having established that direct
hydrolysis of thio-enone 15 into dione 17 proved to be troublesome, we turned to the following two-steps
procedure. Addition of methanol to the thio-enone (MeONa, MeOH, 60 °C, 2 h, then AcOH) afforded the
methoxy derivative 16 * which was next converted into the target dione 17 5 (1 N HCl in THF, 75 % yield
from 15).

5

With the desired dione 17 in hand, we then proceeded with its conversion into our tricyclic synthetic
goal 3. For this purpose, ortho-iodoaniline was first added to this dione (refluxing toluene, TsOH cat, 2 h),
giving regioselectively enaminone 18 16 (95 % yield). Copper-mediated cyclization !7 of the sodio derivative of
this enaminone (NaH, HMPA, then Cul, 120 °C, 2 h) led to the desired indole derivative 19 18 with a 75 %
yield.
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Synthesis of optically active (R)-carbazolone 19 has been thus achieved in eight steps, with an overall
yield of 36 %, starting from keto-ester 11. The conversion of this tricyclic derivative into a pentacyclic alkaloid
analog of type 1 is presented in the following paper ¥°.
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